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A detailed set of "bootstrap" equations is formulated for zero-spin '"external" particles based on a com-
bination of the N/D method with the superposition of top-ranking Regge poles in all three reactions of a
four-line connected part. The contribution from each pole arises from a distinct strip in the Mandelstam
representation so that double counting is avoided. Only real values of l with t~(1 need be considered in
the bootstrap calculation. The amplitude emerging from our N/D equations is meromorphic in the right-
half t plane, and the Regge poles approach high-energy limits that are dynamically determined and which
in some cases may lie to the right of t =0. The reduced residues vanish in the high-energy limit.

I. INTRODUCTION

''T has been proposed that an approximation pro-
~ ~ cedure for strong-interaction "bootstrap" calcula-
tions might be based on a combination of the J(//D
method with the superposition of a finite number of top-
ranking Regge poles for a/l the different channels con-
nected by analytic continuation. ' By "top-ranking" is
meant poles whose trajectories reach or closely approach
the right-half l plane for real values of the energy. Since
it is expected that these leading poles make large con-
tributions over only a finite energy interval (at most a
few GeV in width), the approximation is designed to be
accurate in "strips" covering the low-energy resonance
region and high energies at low momentum transfer.
The spirit of our scheme is similar in this sense to that
of the strip approximation proposed earlier by Chew
and Frautschi' but differs through its dependence on
continuation in angular momentum with the consequent
absence of arbitrary coupling constants. The first paper
dealing with the Regge-strip approximation contains at
least one mathematical error and certain of the assump-

tions need re-examination. In this paper we present a
revised set of strip equations and analyze certain general
features of their solutions.

Physically the most significant features relate to the

asymptotic behavior of pole positions and residues. The
poles generated by our 1V/D equations do not necessarily
all retreat to the left-half J plane but their reduced

residues decrease with a negative power of energy
outside the strip. It is this behavior of the residues that
is primarily responsible for the dominance of the strip
regions.

s, t, u. For example, the (s,t) portion is'

1
A "(s,t) =-

7r2

p(s', t')
ds'dt'

(s' —s) (t' —t)

where the first term needs no subtractions and the
second and third arise from Regge poles in the s and t
channels, respectively. Mathematically speaking, only
poles that reach the right-half l plane for some real
interval of energy need be recognized; the remaining
poles may remain buried in the first term of (II.2). It is
proposed here, however, also to separate out any poles
that closely approach the right-half / plane in order to
make the remainder as small as possible.

Assuming all particles of the same mass, we shall take
the following formula for the contribution from the ith
pole in the s channel:

with

1 "R,(t',s)
R.,"(s,t) =— dt',

t' —t
(II.3)

where subtractions if necessary are to be determined by
analytic continuation from large / in the s and t channels.
Explicitly, if one assumes an analytic interpolation be-
tween all physical / values as well as meromorphy in the
right-half angular-momentum plane, A"(s,t) may be
decomposed into three parts4:

1 " ds' dt'
A" (s, t) = — p„'(s', t')

7r go $ $ go

+P R,"(s,t)+P R,"(t,s), (II.2)

IL THE SUPERPOSITION OF POLE CONTRIBUTIONS R (t ) L2 ( )+ 1) ( )( s)~, (,ip
2The Mandelstam representation breaks the two-body

scattering amplitude into three portions corresponding
to the three possible pairings of the channel variables

The quantity R,"(s,t) is defined in an elementary sense

3 We ignore spin complications to simplify the discussion.
N. Khuri, Phys. Rev. Letters 10, 420 (1963) and Phys. Rev.*This work was done under the auspices f the U. S. Atomic ]$2 914 (1963) has proposed a similar decomposition using simple

powers of s and t rather than Legendre functions of cos8. The
f Present address: Princeton University, Princeton, New Jersey. The Qhuri form however turns out to have asym totic proper-

G. F. Chew, Phys. Rev. 129, 2363 (1963). ties that are unsuited to the strip approximation, as shown in the' G. F. Chew and S. C. Frautschi, Phys. Rev. 123, 1478 (1961). following paper LC. Edward Jones, Phys. Rev. 135, B214 (1964)].
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by formula (II.3) for —1(Ren, (s)(0 and otherwise by
analytic continuation. The function n, (s) is the position
of the ith Regge pole and is assumed to be real analytic
in the s plane cut from so to +~. The function y;(s)
is the reduced residue (the actual residue divided by

q,2~"&) and is assumed to have the same reality-
analyticity properties as n;(s) T.he terms R,"(s,f) can
be shown individually to satisfy the Mandelstam repre-
sentation with double spectral functions asymptotic to
s= $0 and t= t~. Similarly, R,"(t,s) will be a sum of terms
satisfying the Mandelstam representation, but here the
asymptotes are s=s& and /=to. ' In order to justify the
choice (II.3) it is necessary to consider the asymptotic
behavior of n, (s) and y;(s). This is done in the following

paper.
The displacement of the t branch point from fp to

t~(t~) to) in R;"(s,t) and of the s branch point from so to
s& in R;"(t,s) facilitates the formulation of dynamical
equations in the new form of strip approximation, as
already discussed in Ref. 1 where the physical meaning
of t~ is explained. So long as one maintains in (II.2) the
convergent double integral, the displacement in question
merely changes the value of p, &', and one of the features
of the new strip approximation is the assumption that
this convergent integral is small.

The first step in our approximation scheme then is to
represent the full amplitude as

A (s,t) =P LR,"(s,t)+P,R,"'(s,u))

+P LR,' (t,s)+P,R; (t,u)]

+p LRI,"(N,s)+p R "(N, t)j (II.4)

with only the leading trajectories being included and the
sign factor $, ,, q being &1 depending on the signature
of the trajectory in question. Each of the six terms
corresponds to a piece of the double spectral function
that is dominant in a particular strip in the sense of
Fig. 1. Explicit formulas for the double spectral func-
tions corresponding to (II.4) are given below in

Eq. (III.6).
We now list the obvious aspects in which the approxi-

mation (II.4) is satisfactory. First, it contains all the
poles near the physical region with the correct residues,
and if all selected trajectories stay to the right of /= —1

there are no spurious singularities with a strength to
compete with poles. Near any important pole of s, in
other words, for all values of 3 (or u) we are guaranteed
accuracy; a corresponding statement also holds near
poles in t or N. At low energies, in particular, we have at
least the accuracy of the (many-level) Breit-Wigner
formula in the physical resonance region for low angular
momentum, whereas scattering for high angular momen-
tum is controlled by the low-mass particles in the t and

' In Ref. 1 a more complicated form than {II.3) was proposed
for the contribution from a single pole. Both the old and the new
forms seem physically acceptable.

&o

Pro. 1, The Man-
delstam diagram,
showing the strip
regions where the
double spectral func-
tions are dominated
by Regge poles.

so

u channels in the manner by now experimentally
verified. ' The correct threshold behavior as a function
of angular momentum is guaranteed by (II.4) as is the
general analytic structure of partial-wave amplitudes.

What about high energies? If the only / singularities
are simple poles, then as is well known (II.4) becomes
asymptotically accurate for low momentum transfers
as well as for individual partial waves, With branch
points in / the situation is more complicated, but we
know from empirical fits to experiment that the pole
approximation at high energies does not go wildly wrong.
In particular, it represents the experimental behavior
of total cross sections rather well. The use of (II.4)
therefore ensures a more satisfactory treatment of high
energies than has been achieved in any pre-Regge
dynamical calculations. It is the intermediate energies,
i.e., near the edge of the strip, whose description is of
dubious status. In particular, the formula (II.3) be-
comes logarithmically infinite at t= t& in violation of the
unitarity condition in the t channel. This deficiency will

be remedied in the second stage of our approximation
scheme when we apply the unitarity condition in Sec.
IV, but its presence in (II.4) forces us to remember that
the sharp boundary for the strip is artificial.

Even though (II.4) does not satisfy unitarity exactly
in any channel, we hope that the violation is minor
except near the strip boundaries and that by explicit
imposition of unitarity in the second step of our program
a sensible, smooth connection between high and low
energies across the boundary can be achieved. As a
final argument in support of the plausibility of formula
(II.4) we remark that it corresponds to the separation
of the amplitude, familiar in classical nuclear physics,
into "direct" and "indirect" scattering. In the s channel,
for example, the terms R; and R~ arising from crossed
poles give the "direct" or "potential" scattering that
dominates high angular momentum and high energies.
The terms R; represent "indirect" or "resonance"
scattering and are important only for low angular
momentum and low energies. From the dynamical

' We refer here to what are usually called "peripheral" collisions.
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standpoint, of course, the resonance scattering is where the function V, (t,s) arising from the crossed
"driven" by the potential. poles is given by

III. THE GENERALIZED POTENTIALS

As a preliminary to step two of our scheme we intro-
duce now two new amplitudes A+(s,s,), each having a
cut only for positive cos8= s, when s) so. The Mandel-
stam representation for the original amplitude A(s, s,)
can be written

1 " ds
V,+(t,s) =-

Pl 81 S —S

1 " du'
+

x' ~~ Q —I Im Q (,R, (u', t)

Im{P R, (s', t)WQ Rs(s', t)}

where
2 (s,s,)=Aii (s,s,)+dr, (s,s,), (III.i)

1 tA

g, 3 —I Im g PsRs(t', t)

00

A n(s, s,)=— D, (t',s),„ t' —t(s, s,)
+8(t—ti)g P, Rs(t, u)

(III.2)
W8(t —ui)g g;R, (t,u), (III.8)dN'

2 r, (s,s,) =— D„(u',s),
, u' —u(s, s,)

D& and D„being the absorptive parts for the t and I
channels, respectively. We then define

2+(s,t) =Air(s, s,)&21,(s, —s,) (III.3)

and observe that
p+ (s', t') tions to giveds'dt', (III.4)

(s' s) (t' t-) -1 " V.+(t', S)
A+(s, t) =

7r2

where

and may be identified with the generalized potential
defined by Chew and Frautschi. The long-range parts
of the potential including the poles in t are contained in
the first two lines of (111.8). The third line is a short-
range part without poles.

It is possible to evaluate the crossed pole contribu-

P'(S, t) = p, i(s, t)&p, „(s,t), s) ss,
(III.S)

pi~(tpu) ~pi~(upt) y
=P t

R'&(t,s)+P R."'(t,u) j

+8(s—si)P Im{R;(s,t)},

p (s,u) =8(u ui)P f; Im{R.(u,s)}

and
+8(s—si)Q Im{Rs(s,u)}, (III.6)

pi~(t u) = 8(t—ti)Q $s Im{Rs(t u) }

+8(u—ui)P t; Im{R;(u,t)},

so that after some calculation we find

A+(s, t) =P LR i(s,t)+t;R;"i(s,t)$

1 " V,+(t', s)
+— dt', (III.7)

7r

The even part in s, of the original amplitude A(s,s,)
coincides with the even part of A+(s,s,) while the odd
part coincides with the odd part of A (s,z,). Note, how-
ever, that A+ and A are individually neither even nor
odd except when Bose statistics impose an additional
constraint.

In the approximation (II.4) the various double
spectral functions are given by

p„(s,t) = 8(t—ti)g Im{R;(t,s)}

aP LRs'&(t, s)+PsRs'&(t, u)]

1 " 1 1
+— dt' W ~Q tsRi, (t',u')

t' t t' —ul s—

1 1
K P,R, (u, t), (III.9)

u' t u' —u—
with s+u'+t'=s+u+t=P m', the last two terms of
(III.9) being odd functions of cos8, for A+ and even
functions for A and therefore not contributing to the
physical amplitude A. In Ref. 1 these last terms were
erroneously omitted. They correspond to short-range
forces and contain no poles but are needed if the left-
hand cut in cose, is to be completely removed. As will be
seen in Sec. VI they are important in connection with
asymptotic behavior. The essential feature of (III.9) as
opposed to (111.8) is that for t(0 and s)ss the pole
positions and residues occur only with negative argu-
ments and are correspondingly real. Thus the bootstrap
calculation can be carried through with consideration
only of l real and, in view of the Froissart limit, 1~& 1.

r G. F. Chew and S. C. Frautschi, Phys. Rev. 124, 264 (1961).
WVith proper attention to the de6nition of divergent integrals a

bound state in the t or m channels can be shown on the basis o$
(III.g) to give the expected delta function in t.' M. Froissart, Phys. Rev, 123, 1053 (1961).
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The expression (V.4) together with (V.5) is con-
siderably more complicated than that for Ref. 1 but
still contains the pole parameters only where they are
real. The second term in (V.4), arising from the
s-channel poles, had no counterpart in Ref. 1 and may
not be of great importance for s inside the strip since
the integral over ds' is entirely outside. Keeping this
term, however, tends to alleviate the N/D conflict be-
tween threshold and asymptotic behavior that becomes
severe for high values of /. Our N/D equations (IV.1)
and (IV.3) in any event minimize this conflict by avoid-
ing an integration to infinity, but the solutions for /& 1,
if examined as s —+~, necessarily violate the unitarity
condition unless terms like those in (V.4) are included
in Bi~+(s). If the partial-wave amplitude emerging from
the N/D calculation were exactly of the form implied
by the ansatz (II.4), the conflict with unitarity would
be entirely removed by the extra terms. To the extent
that input and output are roughly consistent, the con-
vict is alleviated.

In formula (V.5) integrations to —eo in t occur, whose
convergence depends on the asymptotic behavior of the
pole parameters. It is not expected in the strip approxi-
mation that this asymptotic behavior should be reliable,
but unless the integrals in (V.S) are strongly convergent
there will be important contributions from outside the
strip that cast doubt on the consistency of the whole
approach. Let us now consider, therefore, the behavior
of pole parameters for large negative argument in con-
nection with the evaluation of (V.5).

VI. ASYMPTOTIC BEHAVIOR OF
THE POLE PARAMETERS

It is not dificult to show that as t —&~ for s fixed
R,"(t s) behaves like y, (t)t i&'& in't, '4 so this combination
of factors should vanish for large t if the strip concept is
to have any validity. Such a vanishing, furthermore, is
required if the integrals appearing in the expressions
(V.4) and (V.5) are to converge for all Re/~&0. The
Froissart limit' guarantees that all poles retreat to the
left of /= 1 for negative t, so it will suflice to have y, (t)
decrease asymptotically at least as fast as t '.

As our denominator function Di(s) is constrained
through (IV.3) to approach 1 as s~~ for any finite
Ni(s), the position in the / plane of a zero of Di(s) for
large s must approach an infinite fixed-l singularity of
the numerator function Ni (s). In particular, the
numerator function may have fixed poles arising from
the solution of Eq. (IV.1), which has been shown to be
essentially Fredholm in character. "For nonrelativistic
potential scattering Taylor has shown that there are no
poles in N&(s) beyond those already appearing in the
potential and that it suffices to analyze the fixed
singularities of the potential (i.e., the Born approxima-
tion) in order to deduce the asymptotic behavior of

"This demonstration is given explicitly in the following paper
by one of the authors (C. E. J.)."G.F. Chew, Phys. Rev. 130, 1264 (1963).

Regge-pole parameters. "We have no such assurance in
our case and in fact must expect Fredholm (dynamical)
fixed poles in the numerator function. In particular
there are neighborhoods in the complex / plane where
the kernel of the integral equation (IV.1) is unbounded
in normalization. The most apparent such neigh-
borhoods are near the Gribov-Pomeranchuk fixed poles
at /= —1, —2, of formula (III.9) for the s-channel
generalized potential. These poles necessarily occur in
Bi~(s) through the first term of (V.4), a straightforward
calculation showing that they cannot be canceled by
the second term of this formula. "Near one of these poles
the kernel of (IV.1) can achieve an almost arbitrary
normalization without much change in the (s,s') de-
pendence. It follows that an infinite number of eigen-
values of the homogeneous equation will be accessible.
In other words, each fixed-/ pole of the generalized
potential will produce a swarm of Fredholm fixed-l
poles in the numerator function, and each of the Fred-
holm fixed-/ poles then will serve as a possible terminal
point for a Regge trajectory. The novel feature of this
situation is that our terminal points are dynamically
determined and will vary according to the force
strength.

Let us now examine the possible additional fixed-3
singularities contained in formula (V.4) for Bi"(s). In
the generalized potential as given by (III.9) there are
two types of terms, corresponding to the two distinct
double spectral regions in (III.5):

(a)
1 " R, (s', /)

dS
S —S

1
(b) dt' R, (/', u')

t' —t t' —I (VI 1)

+R, (/', /)
t' —u

"John Robert Taylor, Ph.D. thesis, University of California,
Berkeley, June 1963 (unpublished).

'7 It is the presence of energy cuts in the relativistic generalized
potential that prevents a cancellation, as first noted by Gribov and
Pomeranchuk, in Proceedings of the 196Z International Conference
on IIigh Energy Physics at CERN, edited by J. Prentki (CERN,
Geneva, 1962), p. 522. See also Phys. Letters 7, 239 (1962).' R. Serber, Phys. Rev. Letters 10, 357 (1963), has pointed out
that high-energy elastic-scattering cross sections appear to fall off
as the inverse fifth power of momentum transfer squared. This
would imply a=2.5 for the Pomeranchuk trajectory.

The asymptotic behavior for large t determines the
location of the leading singularity in the / plane. By
assuming that p, (/) t '~ the leading singularity in (a)
occurs at /= n, (~ )—e;. On the other hand, terms of the
type (b) have the Gribov-Pomeranchuk pole at /= —1
for even signature and l= —2 for odd, as well as a
singularity at /=n;(~) —e, . The second term of (V.4)
has its leading singularity at /= rr, (~ )—e;.

Now suppose that" E''7 6j)2 so the contributions out-
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side the strip are really small. Terms of the type (b) then
dominate the t asymptotic behavior of the generalized
potential at least for positive signature and correspond-
ingly should play a controlling role in the asymptotic
behavior of Regge poles. In particular, for positive
signature we anticipate a cloud of fixed-/ Fredholm poles
in the numerator function to surround the point /= —1

(where there must be an essential singularity, as
emphasized by Gribov and Pomeranchukt~), the maxi-
mum displacement of the poles from their "source"
depending on the force strength. Assuming no trajectory
intersections, the I'redholm pole standing farthest to
the right must be the terminal point of the leading
Regge trajectory, and without a numerical calculation
all we can say about its position is that it must lie
between 1= —1 and 1=+1."Of course, once the possi-
bility is raised that with very strong forces this terminal
point may lie to the right of l=0, one is tempted to see
here a means of avoiding the well-known awkwardness
with the Pomeranchuk trajectory when the point l= 0 is
crossed at negative energy.

Next, what about the asymptotic behavior of reduced
residues? In the following paper it is shown that when
the leading singularity of the numerator function is a
simple pole the reduced residue vanishes at least as fast
as 1/s. The possibility of a multiple pole in 1V~(s) is also
discussed. It has not been possible to demonstrate as
strong a tendency to vanish asymptotically as is indi-
cated experimentally or as was assumed above, and if

e, is actually equal to 1, the potential terms vvould have
a fixed singularity at l=n, (~)—1 for both signatures
which might be more important than the Gribov-
Pomeranchuk singularity. The above arguments would
not thereby be altered in any important way, but in any
event there is no reason to trust our equations outside
the strip. If the rate of change of y, (s) near s=O is
successfully described we shall be satisfied.

VII. SUMMARY AND CONCLUSION

We have presented a set of dynamical equations
suitable for bootstrap calculations with zero-spin ex-
ternal particles. The scattering amplitude is represented
in two alternative ways, the pole superposition (II.4)
and the 1V/D prescription of Sec. IV, neither of which is
exact but both of which are supposed to be reasonably
accurate at low energies and low angular momentum
where bound states and resonances occur. The bootstrap
calculation consists of a matching of the pole parameters
in the two forms for real / ~& 1 and low energies. The pole
superposition then gives the high angular-momentum

'9 The constraint to lie to the left of 3=+1 is not built explicitly
into our equations but, as explained in reference 1, is to be imposed
separately.

components at low energy and hopefully the low
momentum-transfer behavior at high energy.

The spirit of this paper is the same as that of Ref. 1,
and the E/D prescription has not been changed in any
way from that of the earlier paper. We have proposed
here, however, an explicit and simple expression for the
pole superposition that conforms term by term to
the Mandelstam representation. The clarity thereby
achieved has allowed the correction of an error in Ref. 1

involving the "third" double spectral region. We are
also proposing now to augment the "input" function
B&~(s) for the E/D equations by a contribution from
the direct-channel poles.

An analysis of our bootstrap equations has revealed
two physically important features absent in ordinary
potential scattering (and which do not accord with con-
jectures made in Ref. 1):(a) The terminal point for our
Regge trajectories is dynamically determined and for
strongly attractive forces may lie to the right of 1=0."
(b) Our reduced residues vanish for large energy at least
as fast as 1/s. Both these features have immediate
relevance to the problem of fitting high-energy data with
Regge poles.

There remains the problem raised by Mandelstam of
cuts in angular momentum. "This difficulty has had no
chance to arise here because we have not attempted
explicitly to impose unitarity beyond the two-body
region. Conceding the correctness of Mandelstam's con-
clusion, there is still room for belief that our bootstrap
scheme is sensible if the cuts are weak in importance
compared to the poles. In energy and momentum-
transfer variables the dominant role played by poles has
been the striking feature of strong-interaction physics;
the same may well be true for angular momentum.

Put another way, in Ref. 1 it was pointed out that
experimentally the bulk of resonance decay seems to
occur in two-body channels if unstable particles are
considered. This circumstance, coupled with the as-
sumption that stable and unstable particles eventually
will achieve equivalent status in the dynamics, suggests
that conclusions based on the two-body unitarity condi-
tion have a wide range of validity. Our approximation
scheme can handle any finite number of two-body
reactions, with the choice of the parameter s~ depending
on how many channels are included. Hopefully, when
a sufFiciently large number of channels is incorporated
into the 1V/D calculation, the precise value of st will

become unimportant. Were that to happen, the goal of
a parameter-free dynamics would have been achieved.

"The latter circumstance would not invalidate our whole
program because there will still be regions of energy (perhaps on
unphysical sheets) where the pole retreats to the left and allows
the function (II.3) to be de6ned."S. Mandelstam, Nuovo Cimento 30, 1148 (1963).


